Lesson 3\_et438b.pptx

ET 438b Sequential Control and Data Acquisition

Department of Technology

# LESSON 3: OP AMP FUNDAMENTALS AND OPEN LOOP APPLICATIONS

Lesson 3\_et438b.pptx

## LEARNING OBJECTIVES

After completing this lesson you will be

- List the characteristics of an ideal OP AMP
- Determine the frequency limit of an OP AMP due to slew rate limits
- Explain the effects of gain-bandwidth limits
- Explain the operation of voltage comparators using ideal and non-ideal OP AMPS

2



Lesson 3\_et438b.pptx

#### NON-IDEAL OP AMP MODEL

Non-idea OP AMP parameters and characteristics

<u>Output offset voltage</u> - voltage on the output when both of the inputs are grounded. Typical value - 2 mV (LM741)

<u>Slew rate</u> - maximum rate of change of output voltage for large changes in the input voltage. Typical value - 0.5 V/ $\mu$ S = 500,000 V/s

<u>Gain-Bandwidth Product</u>-rate of frequency roll-off for OP AMP without feedback. Frequency at which the open loop gain of the OP AMP is 1 (O dB). Typical 1 MHz (LM741) Applies to small signal level changes.





### PRACTICAL OP AMP OUTPUT LIMITS

OP AMP outputs typically saturate at 80% of supply voltages ±V<sub>cc</sub>

Output Voltage  $V_0 = A_v(V_2 - V_1)$ 

Output Range  $0.8(-V_{cc}) \le V_o \le 0.8(+V_{cc})$ 

For a practical OP AMP with A<sub>v</sub> = 100,000 find the difference voltage that will cause output saturation. ( $\pm V_{cc} = 15 \text{ Vdc}$ )

$$V_d = (V_2 - V_1)$$
 so  $V_0 / V_d = A_v$ 

$$\frac{0.8(+V_{cc})}{A_{vc}} = V_{d} = (V_{2} - V_{1})$$

$$\frac{0.8(+V_{cc})}{A_{V}} = V_{d} = (V_{2} - V_{1})$$
$$\frac{0.8(15)}{100,000} = 0.12 \text{ mV} = V_{d}$$

## IDEAL VOLTAGE COMPARATORS

Lesson 3\_et438b.pptx

Open loop OP AMP operation



Ideal Voltage Comparator Operation

Transition take place exactly when voltages are equal

**Operation Logic** 

When 
$$V_1 \ge V_2$$
,  $V_0 = -V_{sat}$   
When  $V_2 \ge V_1$ ,  $V_0 = +V_{sat}$ 









